
Slide # 1

Matt Bishop
Dept. of Computer Science
University of California, Davis

UNIX Security: Threats and
Solutions

Matt Bishop
Dept. of Computer Science

University of California at Davis
Davis, CA 95616-8562
phone: (916) 752-8060

email: bishop@cs.ucdavis.edu

Slide # 2

Matt Bishop
Dept. of Computer Science
University of California, Davis

Goal of Talk

• Describe goals of attackers
• Describe relevant UNIX history, features
• Outline of types of flaws, and examples

– These include current serious problems as well as oldies
– Present solutions and/or suggestions for strengthening

security

• Conclusion

Slide # 3

Matt Bishop
Dept. of Computer Science
University of California, Davis

To Those Who Advocate No
Disclosure

Three can keep a secret,
if two of them are dead.

— B. Franklin

Slide # 4

Matt Bishop
Dept. of Computer Science
University of California, Davis

Overview of UNIX System

• Designed by programmers for programmers
• Open design (no security through obscurity)
• Lots of free, easily available software
• Lots of development done at universities

Slide # 5

Matt Bishop
Dept. of Computer Science
University of California, Davis

Privileges in UNIX

• “superuser” or root user, to which no access control
rules apply

• Each user has own protection domain
• Each user in 1 or more groups which also have own

protection domain

Slide # 6

Matt Bishop
Dept. of Computer Science
University of California, Davis

Attackers

• “bad guys and gals”
• End goal: get something, do damage
• How? get (user or superuser) privileges
• So … first, need access to system

Slide # 7

Matt Bishop
Dept. of Computer Science
University of California, Davis

Example Attack

% telnet victim 25

220 victim sendmail ready Jan 24 05:06:07 1995

helo nsa.gov

250 victim Hello nsa.gov (kgb.su), Pleased to meet you

wiz

220 Enter, oh mighty wizard

shell

%

Slide # 8

Matt Bishop
Dept. of Computer Science
University of California, Davis

What Went Wrong

• technical
– inadequate validation of peer
– incorrect access setting (allowing anyone in)
– sendmail program far too complex

• organizational
– developer not given adequate access to needed resources
– distributors did not disable “back door”

• human
– configuration errors (no password, wrong privileges)

Slide # 9

Matt Bishop
Dept. of Computer Science
University of California, Davis

Threats to UNIX Systems

• human
– errors in administration
– errors in configuration
– lack of knowledge

• organizational
– unrealistic expectations of

workers
– lack of resources
– unwillingness to provide

resources

Slide # 10

Matt Bishop
Dept. of Computer Science
University of California, Davis

Technical Threats

• not desgned with security as primary goal
• new features/programs being added

– usually not written with security in mind
– nonsecure interactions with other programs

• lack of knowledge of older holes

Slide # 11

Matt Bishop
Dept. of Computer Science
University of California, Davis

Example #1

Program “login” logs you in; it runs as superuser
Dynamic loading lets programs load routines from
libraries as needed
First: allow users to say where the libraries are (using
special variable LD_PATH)
Attack: login uses a routine called “getpwnam”; write a
routine by this name giving you a shell, and run login

Slide # 12

Matt Bishop
Dept. of Computer Science
University of California, Davis

Example #2

Fix: Ignore LD_PATH if program runs as superuser
Attack: User “sync” executes program “sync” on login.
This program calls routine “sync”; write a routine by
this name giving you a shell. No password needed, so
log in as sync.
Result: login does not use bogus “getpwnam” as is run
as superuser; runs sync as user sync with privileges of a
system group, and you get a shell with those privileges

Slide # 13

Matt Bishop
Dept. of Computer Science
University of California, Davis

Moral Of The Story

• Don’t forget the past; first problem was seen in
another form, much earlier

• Interaction (between privileged login program and
unprivileged sync program) caused the problem

Slide # 14

Matt Bishop
Dept. of Computer Science
University of California, Davis

Classes of Security Flaws

• Flaw taxonomies developed in 1970s by Program
Analysis and RISOS projects, as well as by NSA

• Resulting classes are isomorphic
• What follows is based on PA work

Slide # 15

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Choice of Initial Protection
Domain

ftp files owned by user ftp
have anonymous ftp enabled
Why: anonymous ftp user can delete, create files and
give itself privileges by altering files

Slide # 16

Matt Bishop
Dept. of Computer Science
University of California, Davis

Network

Network may be in protection domain — unprotected
• no privacy
• no authenticity

Can read data (such as passwords) off the telnet/
rlogin/ftp sessions

Slide # 17

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Have a well-defined security policy
• Know your system!

– how it should be configured to enforce security
policy

– what procedures should be in place, etc.

• Use tools
– COPS does a general check
– tripwire checks file integrity

Slide # 18

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Isolation of
Implementation Detail

NIS: password and user info stored on a central server,
clients invoke client program ypchfn to change user
info
Attack: place appropriate characters into user info and
you could create a bogus account with no password and
arbitrary privileges
Fix: have client check for those characters
Problem: write your own client

Slide # 19

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Look for multiple ways to name one object
– example: main memory and /dev/mem

• Figure out how a resource (database) should be
accessed at abstract level
– security manual
– contrast with way programs do access it

• No easy solutions for this

Slide # 20

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Change

time of check to time of use flaws
superuser program xterm checks that user owns file,
then writes to it; trick is to have it check one file, then
alter what name refers to before the open for writing
How hard: very easy!

Slide # 21

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Slicing
– Determine which pairs of system calls create problem
– Analyze program for those pairs

• Less formal: look for the pairs of suspect functions
– access/open
– access/chroot
– creat/chown
– open/rename

Slide # 22

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Naming

• Look for Trojans with name of system commands
– A very simple program to write; COPS does this

• Look for 2 names for 1 object
– Different privileges for each name

• Look for processes which communicate with another
process

Slide # 23

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Get COPS
• Confine search path to directories not generally

writeable and whose owners you trust
• Look for one file with multiple links

Slide # 24

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Deallocation or Deletion

Input data put into kernel memory (called “cbuf”s)
If this can be read, attacker can get confidential data
(like passwords)
cbufs are reused, but not cleared, so the data read in
lingers

Slide # 25

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• In programs, be sure any memory allocated is cleared
before deallocation

• Clear files before deleting them

Slide # 26

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Validation

• WWW problem: expects data stream to be no more
than 2048 characters long

• So send more, and make excess be a program to
spawn a shell

• Presto! You can access the system
• Reincarnation of a1988 bug used by Internet worm

Slide # 27

Matt Bishop
Dept. of Computer Science
University of California, Davis

On the Network

• IP spoof attack Mitnick used to get to Tsutomu’s
machine

• assumed the IP address in the messages was valid
• allowed access based on the trust Tsutomu had in the

host with that address

No good way around this, as strong authentication
does not exist on the Internet for general use

Slide # 28

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Things to look for
– Use enumerated types instead of integers or macros
– Check all arguments for illegal or unexpected values
– Do not make assumptions you can’t verify; if in doubt, stop
– Check all return values
– Use error-checking library functions

• Know your environment
– If data is inherently untrustworthy, verify it some other way

or don’t repose trust in it

Slide # 29

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Indivisibility

To create a directory, make it (requires superuser
privileges) and then change its ownership
– Operation not atomic

Create directory named x
– Attacker deletes it and creates a link named x to some

protected file

Change ownership of x

Slide # 30

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Kernel mods so the operations are indeed atomic
• Analyze program steps to see what should be atomic
• Bernstein conditions (at most one writer active, and

no reading while writing going on) need to be
enforced

Slide # 31

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Sequencing

• Two people changing the password file
simultaneously

• The make directory bug above
• The xterm bug

Slide # 32

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solutions

• Same as for improper indivisibility
• Also check for violaions of Bernstein conditions

Slide # 33

Matt Bishop
Dept. of Computer Science
University of California, Davis

Improper Choice of Operand or
Operation

• Allowing a mail message to be used as input to a
standard shell
– Sender can get the shell to act on his/her behalf
– This may allow creation of privileged programs which will

then give access to attackers (uudecode bug)

Slide # 34

Matt Bishop
Dept. of Computer Science
University of California, Davis

Solution

• Check operations carefully against policy
• Check arguments, results of function calls and

program outputs

Slide # 35

Matt Bishop
Dept. of Computer Science
University of California, Davis

Ten Biggest Threats

• Improper configuration
– Probably 90-95% of breakins occur because of this

• Improper placement of trust
– Most network breaking involve this

• Improper validation
– Make bogus assumptions, like basing security on IP address

• Improper change
– With UNIX, it’s real easy to do this one

• Using the network to send confidential material
– Read this as: passwords

Slide # 36

Matt Bishop
Dept. of Computer Science
University of California, Davis

More Threats

• Improperly trained system administrators
– “please change my password over the phone”

• Apathetic or hostile users
– These are the first line ofdefence

• Too little resources
– Can stretch things only so far

• Availability of security testing programs
– I don’t consider this a bug; others to

• Existence of superuser
– Can be eliminated, but requires kernel rewrite

Slide # 37

Matt Bishop
Dept. of Computer Science
University of California, Davis

Conclusion #1

Zymurgy’s First Law of Evolving System Dynamics:

When you open a can of worms,
the only way to recan them is to use a larger can

Slide # 38

Matt Bishop
Dept. of Computer Science
University of California, Davis

Conclusion #2

• UNIX is fun
• It has security problems
• You can minimize their threat

– you must be alert to attacks
– have a plan to deal with attacks

